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First Passage Time Distribution in an 
Oscillating Field 

S. V. G. Menon I 

Received May 3, 1991; final October 29, 1991 

Siegert's integral equation approach to calculate the first passage time distribu- 
tion is generalized to the case of a one-dimensional diffusion process in an 
oscillating drift field. A simple algorithm to solve the integral equations is 
developed and numerical results are presented. 
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Diffusive t ranspor t  in an oscillating field is a useful model in analyzing 
experiments on the separation of  large D N A  molecules by pulsed fields, m 
A proper ty  of pr imary interest in such models is the mean first passage 
time a particle takes to exit f rom a specified spatial domain.  Direct simula- 
tion of the t ranspor t  or  numerical t reatment  of the associated F o k k e r -  
Planck equat ion are methods  usually employed to study first passage time 
problems in t ime-dependent fields. (1) 

In this paper, we present a generalization of the Siegert integral equa- 
t ion theory (2) of first passage time problems to the case of a diffusion 
process in an oscillating field. We begin with the Fokke r -P l anck  equat ion 
associated with one-dimensional  diffusive t ranspor t  (1) 

~?P ~?P 6~2p 
-v(t) + 2 (1) 

where x and t are the dimensionless space and time variables and 

v(t)  = ~ sin(cot) (2) 
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is a sinusoidally varying drift field of amplitude e and frequency co. We are 
interested in calculating the first passage time distribution of the particle 
from the domain [ - 1 ,  1 ]. The standard formulation of the problem (3) is in 
terms of the probability P(x, t) dx that the particle is in dx around x at 
time t and has not exited the domain earlier. P(x, t) can be obtained (3) as 
the solution of Eq. (1) with the boundary conditions 

P ( + I ,  t )=O (3) 

and any prescribed initial condition at t = 0. The cumulative probability 
Wo(t) that the particle is in [ - 1 ,  1] up to time t is 

f 
l 

Wo(t) = P(x, t) dx (4) 
- - 1  

and the first passage time distribution g(t) is given by (3) 

dWo 
g ( t )  - (5) 

d t  

The boundary value problem of Eqs. (1) and (3) can be formulated (4~ 
as an intgral equation using the infinite-medium Green's function (or con- 
ditional probability) G(x, t l x', t'). This formulation yields a representation 
for P(x, t) as 

P(x, t) = Poo(x, t) - I [  [G(x, t I - 1, c) P'( - 1, t) 

- G ( x ,  t I 1, t ' )  P'(1, t')] dt '  (6) 

for x in the domain [ - 1 ,  1]. The first term Poo(x, t)dx represents the 
infinite-medium probability of finding the particle in dx around x at t and 
can be expressed as 

1 

P~(x , t )=  f G(x, t lx ' ,O)  Pin(x')dx' (7) 
1 

where Pin(X') is the initial distribution (at t = 0) of the particle position. 
Under the integral sign in Eq. (6), -T-P'(_+I, t) (where P' is the spatial 
derivative of P) in the integral terms in Eq. (6) denote the outward fluxes 
of particle trajectories at _+ 1, since P( • 1, t) = 0 due to the boundary con- 
ditions. The physical interpretation of Eq. (6) is thus clear since the integral 
term is just the contribution to Po~(x, t) of trajectories exited from [-- 1, 1 ] 
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prior to time t. The infinite-medium Green's function is a Gaussian func- 
tion given by 

G(x , t [x , , t , )=[4~z( t_ t , ) ] - l /2exp{  [ x - x ' - V ( t , t ' ) j 2  t 

where V(t, t') is defined as 

V(t, t') = v(t") dt" =-e [cos(cot')-- cos(cot)] (9) 
, c o  

Several equivalent forms of Siegert's integral equations for Wo(t) or 
g(t) can now be derived (a) using the representation for P(x, t) in Eq. (6). 
Indeed, integrating Eq. (1) over x (from - 1  to 1) and using Eqs. (3)-(5), 
we get 

dWo 
= P'(1, t) - P ' ( -  1, t') =- -g(t)  (lO) 

dt 

In a similar way, the first spatial moment of P(x, t), namely 

l w,(t)=f xP(x, t)dx (11) 
- - 1  

is found to satisfy the relation 

dW1 
=v(t)  W0 + P'(1, t ) + P ' ( - 1 ,  t') (12) 

dt 

Taking the zeroth and first spatial moments (over the interval - 1 to 1) of 
Eq. (6) and expressing P'( _+ 1, t) in terms of dWo/dt and dW1/dt, we obtain 
the integral equations 

fo + dWo Wk(t) = S~(t) + G k (t, t') - - ~  dt' 

+ G ~ ( t , t ) L - - ~ - - v ( t ' ) W o ( t '  ) dt', k = 0 , 1  (13) 

where the source functions S~(t) are given by 

Sk(t) = xkP~(x, t) dx, k = 0 ,  1 (14) 
- - 1  
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and the kernel functions G~(t ,  t') by 

1 

, 1 f xk[G(x ,  t I 1, t')+_ G(x, t I - 1 ,  t')"] dx, G~(t, t ) = ~  i k=0, 1 (15) 

Equations (13) are a generalization of the Siegert integral equation 
approach (2) to studying first passage time problems of diffusion processes 
in an oscillating field. If the diffusion problem has symmetry around the 
origin, then W l ( t ) =  0 and G o (t, t ' ) =  0 and Eq. (13) for k = 0 alone needs 
to be considered. Such a case, with application to delayed bifurcation in a 
noisy dynamical system, was studied earlier. (4) For  the present situation, 
we assume that the particle starts at x = 0 at t = 0 so that Pin(x)= 6(x). 
Then, P~(x ,  t) = G(x, t I 0, 0) and the source functions of Eq. (14) can be 
obtained by integrating over x in [ - -1 ,  1]. The results expressed in terms 
of Gaussian integrals are 

So(t)=~---~ _ e x p ( - q  2) d q - F ( z  , z+) 

Sl( t )  = [ e x p ( - z  2 ) - e x p ( - z  + )] + V(t, O) So(t) 

(16) 

with 

_ + 1 - v ( t ,  o )  
z + ( t ) =  2 x / t  (17) 

The function F(z_ ,  z+) can be expressed in terms of error functions. In a 
similar manner, the kernel functions of Eq. (15) can be written as 

1 
G f ( t ,  t ')=-~ EF(a_, a + ) 4- F(b , b + )] (18) 

G~(t ,  t ' ) = [  47z J { [ e x p ( - a 2 - ) - e x p ( - a 2 + ) ]  

_ [exp( - b  2_ ) - e x p ( -  b2+ )] } 

V(t, t') + 1 V(t, t') - 1 
+ G~(t ,  t') 2 -t- Go(t ,  t') 2 (19) 

with 

_+1-  1 -  V(t, t') +_1+ 1 -  V(t, t') 
a+_(t) = 2(t - t') 1/2 ' b+(t) = 2 ( t -  t') 1/2 (20) 
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To compute numerically the solution of the integral equations (13) for 
Wk(t), we divide the time axis into intervals, the nth interval being of 
length 6. = t . -  t. 1. We assume that 6. (n ~> 1) are small and hence Wk(t) 
can be approximated by a linear function in each interval. That is, for 
t._ l <~ t <<. t., 

1 
Wk(t)=~. [Wk(t._l)(t .--t)+ Wk(t.)(t--t._,) ] (21) 

Then Wk(n)=- Wk(t,,) can be expressed as 
ti 

Wk(n)=Sk(n)+ ~ B~(n,m)[Wo(m ) -  Wo(m-1)] 
m - - 1  

+ ~ B;(n, m)[W~(m)- Wl (m-  1)] 
m = l  

- ~ [Ck(n,m) Wo(m)+D~(n,m) W0(m-1) ] ,  n~>0 (22) 
r n = l  

The matrix elements in Eq. (22) are defined as 

1 f,m Bff(n, m)=-~ ~ ~ G~(tn' t') dt' 

1 fjm C k ( n ,  m ) = ~  m - ,  

1 f,'m Dk(n , m)=6m ,~ , 

G~(tn, t') v(t')(t'-- t~_l)  dt' 

G~ (t., t') v(t')(tm- t') dt' 

(23) 

Following our earlier work, (4) we approximate the integrals in Eq. (23) 

G~(tn, tm 1)] 

fire/2) U(tm - -  6m/2)3 (24) 

+G~(t.,tm_,)V(tm ,)] 

Eq. (22) can be solved at 
negligibly small for n suf- 

using a three-point Simpson's rule to get 

B~(n, ' + + m)= g[G~-(t., tm) + 4G#(t., tm--Sm/2) + 

C,(n, m)= ~6m[G~(t., tm) V(tm) + 2G~(t., tm-  

D,(n, m) = ~6m[2G;(t., tm-  6m/2) v(tm -- 6m/2) 

Now, the simultaneous recurrence relations of 
each time point tn (n i> 0) until Wk(n) becomes 
ficiently large, say n ~> N. All the moments of the first passage time distribu- 
tion can then be calculated. For instance, the mean first passage time is 
given by 

f~ 1 ~ [Wo(m)+Wo(m_l)  ] (25) - W o ( t )  d t  = ~ , .  = i 

822,,66/5-6-32 
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Results for first passage time distributions to be discussed below were 
computed using the approximation 

g(tm -- 6m/2) = (1/6m)[ Wo(m) -- Wo(m - 1)] (26) 

In view of the oscillating nature of Wk(t) and g(t), to be expected at 
higher frequencies, it is necessary to use sufficiently small time steps {6m} 
in the above formulas. We have employed an automatic time step genera- 
tion technique well developed in numerical approximations to solutions of 
differential equations. (5) The term neglected in the linear approximation of 
Wo(t) over the nth interval is bounded by IW~'(n-1)152/2, where 
W[~'(n-1) denotes the second derivative of W 0 at t ,_  1. We determine 6, 
with the condition (5) 

2W0(n) 
- - I m ~ ' ( n -  1)1 a~<E~ (27) 

where E~ is some specified error criterion, say, 10 -3. The error term in the 
Simpson's rule leading to Eqs. (24) is 0(65,) and hence may be ignored in 
estimating 6,. To determine 6, from Eq. (27), we use the three-point dif- 
ference formula [employing Wo(n), Wo(n-1),  and Wo(n-2)]  to estimate 
W;'(n-  1), and we employ the following marching scheme through the 
time intervals starting at n = 0 .  After obtaining the initial values Wk(0) 

0.5- 
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0 .2  X'. d . / " / / 
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0 5 10 15 20 25 30 35 40 
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Fig. 1. Mean first passage time (MFPT) vs. frequency ~o for (a)s=3, (b)s=5, (c) s=7, 
(d) e = 10. 
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from Sk(0), we calculate W~(1) with a sufficiently small input value 61, say, 
10 -3. Next, Wk(2) is computed with a starting guess value (5 2 = 6 t and the 
1.h.s. of Eq. (27) is estimated for n = 2. If the criterion is satisfied, then 
calculation proceeds to the next step, that is, n = 3. Otherwise, 62 is picked 
using Eq. (27) (with the equality sign) and Wk(2) is recalculated. This 
procedure is repeated until the error criterion is satisfied. Calculations 
then proceed to the next time step. 

The co dependence of the mean first passage time ~(co) calculated using 
this procedure for values of e =  3, 5, 7, and 10 is shown in Fig. 1. r(co) 
initially deceases from its unbiased value r ( 0 ) =  0.5 (1) (in reduced units) at 
co=0,  attains a minimum (depending on the magnitude of e), and then 
increases as co becomes larger. This behavior may be understood as follows. 
There are two time scales in the process, namely z(0), which may be called 
the "diffusion time," and the half period n/co of v(t) during which the field 
acts along one direction. For  values of co such that r(0)~< n/co, the field 
guides the particle out of the domain [ -  1, 1 ] within the diffusion time. 
Thus, one would expect r(co) to decrease at smaller co. At larger co, when 
n/co becomes smaller compared to ~(0), the field forces the particle to move 
to the right and left about the origin, the strength of the force being 
dependent on e. Then, exit of trajectories from the domain [ - 1 ,  1] is 
mainly controlled by diffusion and thus an increase in mean first passage 
time is expected. In the limit when n/co ~ z(0), the field would have a negli- 

L,O ~'~ FIRST PASSAGE TIME DISTRIBUTION 

i/ i, I , 

0.00 0.20 O. 40 O. 60 0.80 1.00 

t 

Fig. 2. First passage time distribution g(t) vs time t for e=5 and (a) co=0, (b)co=5, 
(c) co = 10. 
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gible effect on the particle and v(co) approaches v(0). These observations 
agree qualitatively with the simulation data. ~1) The method of treating the 
drift field as a perturbation ~1'6) will be completely inadequate for the range 
of e necessary to show the full frequency dependence of mean first passage 
time. 

The first passage time distribution g(t) for e = 5 and co = 0, 5, and 10 
is shown in Fig. 2. The rather fast initial rise in g(t) for co = 5 (say), in com- 
parison to the case of co = 0, is due to the exit of trajectories in the first half 
cycle of v(t). The subsequent fall in g(t) is triggered by the reversal of v(t), 
which inhibits the escape of trajectories. For later times, g(t) has a damped 
oscillatory nature characteristic of co. These oscillations result from the 
particle motion around the origin induced by the field. As co increases, the 
first peak in g(t) occurs earlier and oscillations are centered about the 
zero-frequency curve. 

The dependence of the mean first passage time on other parameters ~) 
of the problem, such as different initial distributions, phase of the drift field, 
etc., can be easily studied using the present method. Note that we have 
shown that it is unnecessary to solve numerically the complete Fokker-  
Planck equation ~1) in the bounded domain for studying first passage time 
problems in time-dependent fields. 

Finally, we remark that there is a large literature ~7) employing Siegert's 
integral equation theory for a related class of first passage time problems 
of diffusion processes in the presence of time-dependent boundaries. 
Numerical as well as analytical studies on first passage time densities have 
been reported. 
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